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Abstract

Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive
data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will
require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To
facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal
orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field
data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by
calculating Poincaré plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncom-
pressed data.
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Keywords: Magnetohydronamics; Singular value decomposition; Generalized low rank approximation; Data compression; Numerical
methods
1. Introduction

Present day simulations [1,2] of magnetically-confined plasmas on magnetohydrodynamic (MHD) space
and time scales are limited by computational resources to relatively modest values of the magnetic Lundquist
number S (the ratio of the resistive diffusion time to the Alfvén transit time) in the range 104–105. To simulate
fusion plasmas with parameters characterizing future burning plasma experiments like the International Ther-
monuclear Experimental Reactor (ITER [3]) device, where S � 109, computations will be required on much
finer meshes and shorter time steps than present computers are capable of handling. Associated with this
higher spatial–temporal resolution will be the production of large amounts of numerical data needed to
represent the plasma fluid state (most notably, the magnetic field vector B and the fluid velocity v) at various
positions and times.
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At the high temperatures in a burning plasma, it will be necessary to augment the classical (short-mean-free
path) fluid description of MHD with additional ‘‘closure’’ relations relating the viscosity tensor to the funda-
mental MHD state variables (density, temperature and fluid velocity). One way of computing these closure
quantities is to use a particle-based simulation in conjunction with the evolving MHD fields. Thus, MHD data
will be frequently exchanged with a particle-following calculation designed to compute the viscosity tensor
from particle motion in the complex magnetic field. The resulting components of the viscosity tensor, appro-
priately computed on the fine spatial mesh required by the MHD simulation, will be used in the MHD sim-
ulation to evolve the fluid equations.

The exchange of fluid and particle-based viscosity data will occur frequently during the time evolution of
the simulated plasma. In a multi-processor simulation, it also is necessary to ‘‘broadcast’’ this data to numer-
ous processors. It is therefore useful to consider methods for compressing this data as much as possible while
retaining the fine-scale structures needed to accurately reproduce the desired physics processes.

In this paper, we apply singular value decomposition (SVD) to three-dimensional (3D) MHD data to
achieve significant data compression. (SVD is known by various other names – principal orthogonal decom-
position, or POD; empirical orthogonal functions, or EOF; and principal component analysis, PCA.)

It should be noted that SVD analysis has been previously used to extract dominant features from two-
dimensional (2D) turbulence measurements in fusion plasmas [4]. In Ref. [4], SVD was used to expand the
fluctuation data using a smaller number of terms as compared to a Fourier (FFT) analysis. This was found
to give an advantage to the SVD method in identifying the basic modes and therefore attempting to under-
stand the complex MHD phenomena being analyzed. This form of data compression, applied to real exper-
imental data, is similar to the method described here which is however extended to 3D numerical data. The
present method could be applied to 3D experimental data as well. In addition, SVD techniques have been
applied [5] to extract 2D current sheets for designing coils for compact stellarators.

The paper is organized as follows. We first review SVD compression on two-dimensional discrete data in
Section 2.1. Since subsequent applications will involve compression of three-dimensional magnetic data, we
discuss in Section 2.2 techniques by which SVD can be extended to three-dimensions: (a) simple planar slices;
(b) stacking (folding) methods and (c) generalized low rank approximation (GLRA [6]). Of these, the GLRA
method performs best for our data. In Section 3 we describe several methods for applying SVD to data in both
rectangular and non-rectangular domains. We have found that a domain mapping method provides, for our
data at least, the largest compression at a given level of accuracy. Section 4 presents an application of GLRA
to 3D magnetic field data obtained from a time slice of an M3D1 simulation. There we compare Poincaré plots
computed either with the uncompressed or compressed data. Appendix A presents methods we have developed
for smoothly ‘‘extending’’ data limited to non-rectangular domains so that discontinuous artifacts are not
introduced to pollute the SVD energy spectrum.

2. Application of SVD to data compression

This work shows how to use SVD (or POD) compression techniques to represent magnetic field data in a
compact form. The data set of interest here is defined in a toroidal domain that represents the interior of a
tokamak or stellarator, which are devices used to confine high temperature fusion plasmas using magnetic
fields and internally-generated plasma currents. In the simplest equilibrium case, the magnetic field is tangent
to nested tori known as flux surfaces that fill the toroidal domain. Thus, although the magnetic field is in gen-
eral three-dimensional, in this case the geometry is effectively two-dimensional (2D) when restricted to a given
flux surface.

As an introduction to the use of SVD methods for MHD data compression, Section 2.1 reviews standard
(2D) SVD. This technique is applied to compress two-dimensional (2D) planar data slices taken on fixed mag-
netic surfaces. The MHD data sets considered in subsequent sections are intrinsically three-dimensional (3D).
The generalization of SVD compression methods to such 3D data is described in Section 2.2.

The orthogonal real-space coordinates used to describe the domain for the MHD problem are the cylin-
drical coordinates (R, u, Z). In these coordinates, the boundary of the toroidally-confined plasma is gener-
ally non-rectangular (irregular). For example, it may be a nearly circular (or elliptical) torus. It is therefore
useful to introduce magnetic flux-based curvilinear coordinates, denoted by (s, h, u), which describe a set of
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nested toroidal surfaces. These are defined so that the s = 1 surface defines the plasma boundary (where the
plasma pressure gradient vanishes) and s = 0 is the ‘‘magnetic axis’’, which is the singular axis of this
‘‘polar-like’’ coordinate system. Here, 0 6 h 6 2p denotes the (poloidal) angle variable, and u can be chosen
to be the cylindrical toroidal coordinate. The mapping between these two coordinate systems is described in
Section 3.2.

2.1. Review of SVD in 2D

SVD is a well-known technique for extracting dominant ‘‘features’’ and coherent structures from 2D data
[7] and ‘‘compressing’’ that information into a few low order ‘‘weights’’ (singular values) and associated ortho-
normal eigenfunctions [8]. Let A(x, y) be a scalar field representing one of the components of the magnetic
field vector. (Here, x, y are either local cylindrical coordinates R, Z in a fixed toroidal plane, or angular coor-
dinates h, u on a fixed magnetic flux surface.) It is convenient to define a 2D rectangular grid (xi, yj) for
i = 1, NI and j = 1, NJ. The discretized field data specified at these grid points are denoted by the NI · NJ

matrix Aij = A(xi, yj). The maximum number of terms in the SVD expansion of Aij is NSVD = min(NI, NJ).
The SVD decomposition (see below) of the data matrix Aij yields a set of NSVD positive weights (singular val-
ues) and associated orthonormal eigenfunctions in both the i and j indices. While SVD compression is well-
known in image processing and other areas, it has not been previously explored in the context of large-scale,
particle-based numerical simulations in fusion plasmas. The advantage over Fourier decomposition is that
structures of various spatial scales can be expressed in the lowest-order SVD eigenfunctions, a property that
SVD shares with 2D wavelet decomposition.

The fundamental SVD theorem states that any 2D matrix Aij may be expanded as a tensor product sum as
follows:
Aij ¼
XNSVD

k¼1

wkukðxiÞvkðyjÞ ð1Þ
In Eq. (1), each value of k labels a single positive (or possibly zero) SVD singular value wk, which belongs to a
monotonically decreasing sequence (wk+1 6 wk). The proper orthogonal modes (POM), or SVD ‘‘eigenfunc-
tions’’, are denoted by {uk} and {vk}. Efficient numerical methods exist [8,9] for computing the matrix ele-
ments uik ” uk(xi) and vjk ” vk(yj), as well as the singular values wk, appearing in Eq. (1). These discrete
‘‘eigenfunctions’’ comprise an orthonormal basis for the discrete xi and yj spaces, respectively:
huk; uk0 i �
XNI

i¼1

uikuik0 ¼ dkk0

hvk; vk0 i �
XNJ

j¼1

vjkvjk0 ¼ dkk0

ð2Þ
The indices (k, k 0) in Eq. (2) vary from 1 to NSVD. Note that throughout this paper, only discrete data are rep-
resented in Eq. (1). Such data arise naturally from numerical output on discrete angular and radial meshes.
When values are required at points between mesh points (as for example when following particle orbits, see
Section 4), biquadratic interpolation over the discrete i, j mesh values is used. (Alternatively, spline or trigo-
nometric polynomials could be fit to the SVD modes to perform this interpolation, but that is not done here.)

At first glance, the SVD sum in Eq. (1) does not seem to be a promising candidate for compression, since
there are NSVD(1 + NI + NJ) terms to compute and store. This number exceeds the original NINJ data points.
However, a key observation that makes SVD viable for compression is that the singular values wk often decay
rapidly with increasing k. This implies that only a small fraction of all the terms in Eq. (1) are typically needed
to accurately represent the dominant (physically relevant) features of the data. Based on this, we introduce a
rank-r approximation for Aij:
AðrÞij ¼
Xr

k¼1

lkuikvjk ð3Þ
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and inquire how, for a given rank r, to choose the lk weight factors to best match the original data matrix. To
do this, it is convenient to define the rank-r error as the following (squared) Frobenius norm:
eðrÞ ¼
XNI

i¼1

XNJ

j¼1

Aij � AðrÞij

���
���2 ð4Þ
Note that when r = NSVD, the error e(NSVD) = 0 for lk = wk. For r < NSVD, the rank-r truncation error may
be written [using the orthonormality relations in Eq. (2)] as:
eðrÞ ¼
Xr

k¼1

ðlk � wkÞ2 þ
XNSVD

k¼rþ1

w2
k ð5Þ
The first term in Eq. (5) vanishes by choosing lk = wk for k = 1, . . ., r. The second term is minimized since the
SVD singular values are ordered to decrease monotonically with k. Thus, Eq. (5) simplifies to:
eðrÞ ¼
XNSVD

k¼rþ1

w2
k ð6Þ
It can be shown [8] that the SVD solution in Eq. (3), with lk = wk yields the minimum norm over all possible

rank-k approximations [not just for the simple form we chose in Eq. (3)].
The result in Eq. (6) is similar to the Parseval relation in the theory of continuum orthogonal function

decomposition. Its physical interpretation is also similar. Using Eqs. (4) and (6), note that the ‘‘energy con-
tent’’ E ¼

PNI
i¼1

PNJ
j¼1A2

ij of the original data set can be written E ¼ eð0Þ ¼
PN SVD

k¼1 w2
k . Thus, e(r) in Eq. (5)

may be interpreted as the energy deficit in the rank-r compression, showing that SVD compression is equiv-
alent to a truncation based on the energy content of the data. A rank-r SVD approximation will be ‘‘good’’
provided the normalized energy g(r) is ‘‘small’’, where
gðrÞ � eðrÞ
eð0Þ ð7Þ
In our analysis of model data and actual magnetic data (Section 4), it is generally observed that even for
relatively low ranks r� NSVD, values of g(r) � 10�6–10�8 can readily be achieved. This yields a large SVD
compression ratio RC, which is the ratio of the original NINJ data points to the number of terms in the
rank-r approximation in Eq. (3):
RC �
N INJ

rðNI þ NJ þ 1Þ ð8Þ
For the case when NI � NJ� 1, this reduces to RC � NSVD/(2r)� 1, signifying a large compression ratio can
be achieved whenever g(r)� 1 is satisfied for r� NSVD.

The residual energy expression in Eq. (6) may also be used as an adaptive quantitative measure of the min-
imum rank necessary to achieve a prescribed accuracy of the data fit. Such adaptation of the rank may be
necessary as the MHD solution evolves shorter spatial scales in time.

2.2. SVD compression in 3D

The MHD data sets we wish to compress are distributed throughout a three-dimension (3D) toroidal vol-
ume. While the SVD theorem is not directly applicable for dimensions greater than two, it is possible to extend
the standard procedure to compress 3D data by applying the basic SVD procedure to a sequence of 2D data
structures. We will briefly consider three methods for obtaining low rank approximations for 3D data struc-
tures in a torus. In what follows, the array A(si, hj, uk) ” Aijk represents one of the scalar MHD potential func-
tions or a component of the magnetic field (or the vector fluid flow field), typically represented in a flux
coordinate system (see Section 3.2). For the MHD problem considered here, the integer indices (i, j, k) corre-
spond respectively to discrete radial, poloidal and toroidal angle points, with the ranges of i, j defined above,
and 1 6 k 6 NK.
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2.2.1. Planar slices

A straightforward approach is to apply SVD separately to the data in each toroidal plane (corresponding to
individual values of k). There will now be an indexed set (with respect to k) of SVD weights and eigenfunc-
tions. In this case, the compression ratio scales as in the 2D problem, Eq. (8), with r now denoting the max-
imum rank of the 2D SVDs over all planes. However, as shown in the following two sections, the data
compression achievable in 3D can actually be much larger than this, scaling as the square of the 2D compres-
sion ratio, so this simple method is not efficient. However, an advantage of the planar slice method is that only
2r multiplies and r additions are needed to evaluate the value of the data at any given point of the i, j, k cube.
This turns out to be smaller (by a factor of r) than the number of operations required by the two higher-com-
pression methods described below. Thus, there is a trade-off between a large compression ratio and the num-
ber of elementary operations needed to reconstruct the original data.

2.2.2. Stacking (folding) methods

Another method for compressing higher dimensional data is called stacking [10] or matrix unfolding. Due to
their periodicity, either of the angular coordinates (#, u) can be folded together with the radial coordinate, or
with each other, to create a new (stacked) coordinate. Folding preserves the continuity of function values with
respect to the stacked coordinate, due to the periodicity of the angle coordinates. This is important for the
sequential application of SVD because – as will be discussed in Section 3 – the SVD spectrum generally decays
rapidly (yielding large compression ratios) only in the absence of discontinuities in the data. (The exception to
this is when the discontinuities are aligned along coordinate lines.)

Folding reduces the 3D data matrix to be decomposed to an equivalent 2D matrix for which SVD applies.
The resulting SVD is unfolded and SVD is again applied to each of the 2D basis functions that correspond to
significant weights in the folded decomposition. The significant result of this procedure is that the net SVD
compression scales as the square of the 2D compression ratio.

The folding (and unfolding) of the general 3D data matrix Aijk will now be described. It is convenient to
define a 2D integer stacking coordinate operator, [j, k], as follows:
½j; k� � jþ N J ðk � 1Þ ð9Þ
The range of this operator is (1, NJNK). The stacking operator provides a mapping of the 3D data into the
2D i, [j, k] folded plane. The only restriction on the stacking [j, k] is that the coordinate indexed by j in Eq.
(9) must be one of the periodic angles. This is necessary to preserve the continuity of data in the folded
space. Observe that the data will vary continuous with [j, k] if, and only if, there are no jumps between
the j = 1 and j = NJ points when k is incremented by one in Eq. (9). This is satisfied by requiring the j-coor-
dinate to be periodic.

Now SVD can be applied to construct a rank-r1 approximation of the 2D folded data array Ai[j,k] = Aijk:
Ai½j;k� ¼
Xr1

a¼1

wauiav½j;k�a ð10aÞ
The original 3D array can be recovered from Eq. (10a) by unstacking the vectors v[j,k]a for each SVD index a.
Further compression is then achieved by applying SVD to construct rank-r2 approximations for each of the r1

2D (unfolded) arrays v[j,k]a:
v½j;k�a ¼
Xr2

b¼1

~wab~ujab~vkab ð10bÞ
Eq. (9) is used to perform the unfolding transformation back to the original j, k coordinates in performing (for
each a) the SVD indicated in Eq. (10b).

Repeating the calculations leading to the 2D compression ratio given in Eq. (8) yields the 3D compression
ratio for this method:
RC ¼
NI NJ NK

r1½1þ N I þ r2ð1þ NJ þ NKÞ�
ð11aÞ
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Assuming comparable dimensions NI � NJ � NK = N and N� r2� 1 yields the approximate compression
ratio
RC � 2ðN=2r1ÞðN=2r2Þ ð11bÞ
where N/2r1 and N/2r2 are the 2D compression ratios (see Eq. (8)). The fact that Eq. (11b) is symmetric in r1

and r2 suggests that the compression ratio is independent of the choice of folding angle (a result consistent
with a limited number of calculations we have performed using folding). Thus the 3D compression ratio scales
like twice the product of the 2D compression ratios. The price for this increased compression (compared with
the planar slices method) is the larger number of elementary arithmetic computations [r1(1 + 2r2) multiplica-
tions, compared with 2r] that must be performed to reconstruct the original data matrix. (Of course, r1 and r2

may be smaller than r, so the estimate given here is only suggestive of the increased computational complexity
of reconstructing data with this method.)

2.2.3. Generalized low rank approximation

A generalized low rank approximation method [6] for 3D compression has been developed which is partic-
ularly well suited for the MHD data considered here. This is because the MHD data variation in one of the
coordinate directions (the toroidal angle) is both periodic and slowly varying. The GLRA method is an iter-
ative algorithm for minimizing the (squared) Frobenius norm of the difference between the 3D data matrix Aijk

and a specialized form called the ‘‘generalized low rank approximation’’:
XNK

k¼1

keAk � LDkRTk2 ð12Þ
For each value of k in Eq. (12), ðeAkÞij � Aijk 2 RNI�NJ is a 2D matrix with dimension NI · NJ. The k-coordinate
is chosen to be the toroidal angle (slowly varying periodic coordinate direction). The two matrices L 2 RNI�r1

and R 2 RNJ�r2 are independent of the index k and have r1 and r2 orthonormal columns, respectively. (Here r1

and r2 are the reduced ranks.) The matrices Dk 2 Rr1�r2 are generally not diagonal except in the 2D case where
NK = 1. In that case, the matrices L and R reduce to the standard SVD matrices U and V. In 3D, L, R, and Dk

are determined by an iterative procedure [6] that minimizes (at least locally) the norm in Eq. (12), for pre-
scribed values of r1 and r2. The resulting compression ratio RC is:
RC ¼
N IN J N K

NI r1 þ NJ r2 þ N Kr1r2

ð13Þ
For the usual case when the last term in the denominator of Eq. (13) is dominant, the compression ratio for
this method will scale as
RC � ðNI=r1ÞðNJ=r2Þ ð14Þ
which is (four times) the product of the 2D SVD compression ratios associated with the average (over k) matri-
ces L and R.

The two methods described in Sections 2.2.2–2.2.3 generally yield comparable results for the compression
ratio as a function of the rank reduction (note that GLRA yields twice the ratio of the stacking method). The
recursive method converges quite rapidly (typically in two or three iterations). Moreover, since GLRA
requires SVD of a larger number of substantially smaller matrices than the folding method, the computational
speed of the two methods tends to be similar.
3. Effect of domain geometry on data compression

SVD decomposes data as a sum of Cartesian (tensor) products (Eq. (1)). It is therefore expected to work
efficiently only when the data are prescribed in rectangular domains. For our purposes, a rectangular domain
of a 2D space with coordinates (w, z) is a domain whose boundaries are w = const. and z = const. coordinate
lines. We shall consider two classes of examples that occur naturally in MHD problems, which illustrate the
effects of geometry on SVD compression.
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3.1. Rectangular domains

First consider a rectangular domain, which can be illustrated by MHD equilibrium fields with nested toroi-
dal magnetic surfaces. In this case it is useful to decompose the data independently on each surface. Within
each 2D surface section, the domain is spanned by (h, u), where both angular coordinates have the range
[0, 2p]. To illustrate the SVD compression of magnetic data in this domain, we consider the magnetic field
magnitude |B| in a quasi-poloidally symmetric stellarator [11] (QPS). Fig. 1a shows a 2D flux surface plot
(on one magnetic surface) of the |B| contours computed on a 100 · 100 grid. Figs. 1b–d show the rank 2, 4
and 6 SVD (POD) approximations to the data. The rank-2 approximation already captures the main coherent
(longer wavelength) features of the field, while the rank-6 approximation captures most of the fine-scale details
of the field as well. Fig. 2 shows the decay of the singular values wk as function of the rank k for the QPS data.
Note that for rank k = 6, the 2D compression ratio is RC � 10, and the residual energy in the higher-order
(truncated) modes is g(6) � O(10�6). This may justify ignoring the higher-order SVD components (at least
for equilibrium calculations).

3.2. Non-rectangular domains

There are many situations of practical importance in which the data may be specified over an irregularly-
shaped domain. We have already mentioned the case of a toroidally-confined plasma with a circular
boundary. Several procedures can be used to extend SVD techniques to such domains. Two categories of such
Fig. 1. Effect of SVD data compression for a QPS (3D stellarator) magnetic field |B| computed from a VMEC equilibrium. Fig 1a shows
the originally computed contours of |B| vs. the two angles (h, u) on a single magnetic surface. Figs. 1b–d show the reconstructed contours
using various rank-order truncations for the SVD spectrum.



Fig. 2. SVD singular values as a function of the rank for the QPS data shown in Fig. 1.
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algorithms are discussed below: (1) region mapping; and (2) grid extension. The region mapping algorithm
maps the irregular domain into a rectangular one, while the grid extension method attempts to fill the region
between the true (irregular) boundary and a minimum circumscribing rectangle with ‘‘suitable’’ values. The
Fig. 3. Original model 2D field is shown on the square domain (�1 < x < 1, �1 < y < 1) in Fig. 3a. Fig. 3b shows the data masked by
the circular plasma boundary. Fig. 3c shows the data in the flux (polar) coordinates system (s, h). Fig. 3d shows the decay with rank of the
SVD spectrum for various grid extension and mapping options. The curve at the top corresponds to the direct SVD decomposition of
the non-rectangular domain in Fig. 3b, the middle curve is the spectrum with the data extended using the grid extension algorithm
discussed in Appendix A, and the bottom curve depicts the spectrum of the SVD applied to the flux-coordinates data in Fig. 3c.
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grid extensions are sensitive to the continuity of the ‘‘ghost’’ region with the real (interior) domain and may
result in the slow decay of the SVD singular value spectrum if improperly applied.

3.2.1. Region mapping
For the MHD data considered here, we have found that mapping the non-rectangular domain defined in

cylindrical coordinates into a rectangular one defined in flux coordinates leads to maximum SVD compression
ratios. (This might be expected, since no arbitrary ‘‘ghost’’ data are introduced.) As previously described, in
each toroidal plane / = const., there is a natural magnetic ‘‘polar’’ coordinate system which describes a nested
set of equilibrium surfaces. Note that here we refer to the underlying coordinate system as nested. This is dif-
ferent from the actual 3D MHD magnetic surfaces which, even if they exist, need not be nested. Recall that the
coordinate ranges are 0 6 s 6 1 and 0 6 h 6 2p, so that (s, h) defines a rectangular domain. For the MHD
data generated by the M3D1 code, the coordinate mapping is available from the underlying VMEC [12] equi-
librium. In the case of ‘‘stellarator symmetry’’, where R(s, h, u) = R(s, �h, �u) and Z(s, h, u) =
�Z(s, �h, �u), the mapping has the following form:
Fig. 4a
using M

field w
respect
Rðs; h;uÞ ¼
X
m;n

RmnðsÞ cosðmh� nuÞ

Zðs; h;uÞ ¼
X
m;n

ZmnðsÞ sinðmh� nuÞ
ð15Þ
. Poincaré puncture plot displayed in cylindrical spatial coordinates for the plane / = 0, using data for a magnetic field computed
3D with a finite m = 1 island. Electron orbits were computed in flux coordinates and mapped back to real space. The magnetic

as obtained using spline fits to the original data set consisting of a mesh of size 235 · 79 · 49 in h, s, and / flux coordinates,
ively.
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The equilibrium calculation [12] provides the mapping coefficients Rmn(s), Zmn(s) in Eq. (15), which can be
generalized to cases of non-symmetric plasmas.

Using Eq. (15), the magnetic data can be converted to a mesh cube in (s, h, u) space to which the GLRA
method described in Section 2.2 can be applied. This method is used in Section 4 to follow particle orbits using
compressed data for a realistic, 3D magnetic field.

3.2.2. Grid extension algorithms

For situations where a domain mapping of the form given in Eq. (15) is inconvenient to use, it is possible to
‘‘extend’’ the data into the region outside the irregular data domain. This ‘‘ghost’’ region is initially devoid of
any data and extends between the data boundary and a minimum circumscribing (bounding) rectangle. (In the
case of MHD plasmas, this region consists of zero pressure-gradient plasma and is often referred to as the ‘‘vac-
uum’’.) The method of extension is not unique and has a strong influence on the decay rate of the SVD. If no
attempt is made to extend the data in a continuous manner, then the SVD spectrum can decay very slowly
compared with the case of a rectangular domain filled with similar continuous data. (See Section 3.2.3 below
for an example of this.)

Appendix A describes two methods of grid extension which preserve data continuity and higher-order
derivatives.
Fig. 4b. Same Poincaré puncture plot as shown Fig. 4a, but using a rank-3 approximation (with a compression ratio >1000) for the
magnetic field data.
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3.2.3. Example: compression in an irregular domain

The effects of irregular boundaries on SVD compression in 2D can be illustrated by using a simple scalar
field to model one of the components of the magnetic field:
bðx; yÞ ¼ cosðpx=2Þ sinðpyÞ ð16Þ

Note that since this scalar is itself a Cartesian product, its SVD over the rectangular domain (�1 6 x, y 6 1)is
composed of only one singular value. Contours of b(x, y) over this domain are shown in Fig. 3a. For a
confined plasma, the boundary of the plasma is generally not rectangular and the data are known (from a sim-
ulation, for example) only inside an irregular boundary. For this example, we choose a simple non-rectangular
(circular) boundary for the plasma:
x2 þ y2 ¼ r2 ð17Þ

Restricting even this very simple data set to a non-rectangular domain can have significant effects on the result-
ing SVD (see Fig. 3d). Three methods for performing the SVD were considered: (1) the data set was extended
into the rectangular bounding box by simply zeroing the field values in the ‘‘vacuum’’ region, as shown in
Fig. 3b; (2) the grid was extended while trying to maintain continuous data values at the boundary; and (3)
the circular domain was mapped into flux coordinates (s, h) using the simple polar map x = scos h, y = s sin h,
which yields a rectangular domain in s and h [but not a Cartesian product for b(s, h)]. The mapped data are
plotted in Fig. 3c. The first method produces a discontinuity at the circular boundary, which has two delete-
rious effects on the SVD spectrum. First, the spectrum decays slowly with rank. Second, there is a plateau in
Fig. 4c. Poincaré puncture plot using rank-10 SVD approximation for the fields in Fig. 4a.
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the SVD spectrum where the SVD singular values show no appreciable reduction with rank. This implies very
little data compression would be possible for this decomposition. Both of these effects are similar to the im-
pacts on Fourier spectra when discontinuities in the data exist. Fig. 3d compares the decay rate of the SVD
singular values for the various algorithms. The rapidly-decaying curve corresponds to the region-mapping
algorithm, while the slowest decay is obtained when the data are simply zeroed in the vacuum region. Grid
extension, while maintaining continuous data values, produces a result intermediate between these two ex-
tremes. Of course, if the grid extension was ‘‘optimal’’, it would reproduce the original data and have only
a single non-zero SVD weight!

4. Application of SVD compression to MHD fields: calculation of electron particle orbits

In this section we use SVD compression to compress the magnetic field data needed to evolve particle orbits
in a realistic 3D magnetic field. The DELTA5D [13] particle-based Monte-Carlo code was used to compute the
particle orbits. The magnetic data set was obtained from a nonlinear tokamak plasma simulation using the
M3D1 MHD code. The data correspond to a plasma state that has evolved to a non-nested magnetic topology
with a large internal magnetic island at an interior magnetic flux surface where the mean rotation number is
i = 1. The rotation number is the ratio of the mean number of circuits of the magnetic field in the poloidal and
toroidal directions, respectively. An island is a change in the magnetic topology which splits the originally
nested magnetic surfaces due to resonant perturbations of the magnetic field occurring at low order rational
values of i. Several other smaller islands are also present throughout the plasma volume (see Fig. 4a).
Fig. 4d. Poincaré puncture plot using rank-20 SVD approximation for the fields in Fig. 4a.
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The orbit evolution is obtained by integrating the particle drift orbit equations [13]. We will consider elec-
tron orbits as the simplest example of how SVD data compression can be integrated with a particle orbit code
(the effects of cross-field magnetic drifts and particle trapping will be ignored in this simulation).

Recall that SVD compression of magnetic data is, as discussed in Section 3, most naturally performed in
terms of the flux ‘‘action-angle’’ coordinates (s, h) defined by the coordinate mapping Eq. (15). The chain rule
can be used to express the motion in cylindrical space (R, u, Z)in terms of action-angle coordinate velocities as
follows:
Fig. 5a
points
the plo

Table
RMS e

Rank

3
10
20
_R ¼ Rs _sþ Rh
_hþ Ru _u

_Z ¼ Zs _sþ Zh
_hþ Zu _u

ð18Þ
. Poincaré plots obtained for the same field data used in Fig 4a, but now displayed in flux coordinate space (s–h). The starting
of four selected orbits – 2 near the separatrix of the m = 1 island and 2 near the elliptical point of the island – are marked in each of
ts. Full rank data is plotted.

1
rror and compression ratios for various SVD rank approximations corresponding to the data in Figs. 4a–4d

Normalized RMS error Compression ratio

0.01 660
0.001 113
0.00005 35
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Here, the dot over a coordinate indicates the total time derivative along the particle orbit. Note that for
X 2 (R, Z), Xa ” oX/oa can be computed in action-angle flux coordinates from the inverse-mapping in Eq.
(15). Since u in Eq. (18) is the true cylindrical toroidal angle coordinate, us = uh = 0. Inverting Eq. (18) yields
the following flux coordinate time evolution equations:
_s ¼ ZhvR � RhvZ

s

_h ¼ �ZsvR þ RsvZ

s

ð19Þ
Here, s ” o(R, Z)/o(s, h) = RsZh � RhZs > 0 is the 2D Jacobian (for each toroidal plane) between the cylindri-
cal and flux coordinates. The speeds appearing in Eq. (19) are:
vR ¼ _R� Ru _u

vZ ¼ _Z � Zu _u
ð20Þ
Equations (19) and (20), together with the mapping Eq. (15), may be used to evolve the particle orbits in ac-
tion-angle coordinates, since the time derivatives on the right of Eq. (20) may be expressed in terms of the
SVD-compressed magnetic field data (which are also known in action-angle space).

The simplest application of these orbit equations is to follow electron orbits for which the electron drift
normal to the surfaces can be ignored. In that case, Eq. (20) reduces to:
Fig. 5b. Same as Fig. 5a, but using rank-3 data.
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vR ¼ vk
RBR � RuBu

RjBj

vZ ¼ vk
RBZ � ZuBu

RjBj

ð21aÞ
with
R _u ¼ vk
Bu

jBj ð21bÞ
Here, jBj ¼ B2
R þ B2

Z þ B2
u is the magnitude of the magnetic field and vi is the speed of the electrons along the

magnetic field.
The expressions in Eqs. (19) and (21) can be integrated numerically to obtain the electron orbits in the

M3D-generated magnetic fields (once the parallel speed vi is know). Significant departures from the lowest-
order, nested equilibrium surfaces s = const. will be indicative of the presence of resonant, magnetic-island
producing perturbations in the magnetic data. These equations can be further simplified by dividing Eq.
(19) by Eq. (21b) to eliminate the parallel speed. This is valid for transiting (untrapped) particles which are
not reflected by the magnetic well and do not otherwise stagnate. Thus, the orbits trace the magnetic field lines.

The Poincaré maps for the electron orbits in the complex magnetic field structure under consideration are
shown in Figs. 4a–4d for an M3D calculation with a large m = 1 magnetic island. One hundred orbits (field
lines) distributed along the midplane horizontal x-axis were followed 1000 times around the torus to generate
Fig. 5c. Same as Fig. 5a, but using rank-10 data.
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these plots. The original magnetic data set was provided on a 235 · 79 · 49 (s, h, /) grid. In Fig. 4a, the exact
orbits based on uncompressed field data are displayed, where a 3D cubic spline was used for interpolation.
Figs. 4b–4d show the field line puncture points (electron orbits) generated by varying the rank of the SVD
used to approximate the three components of the magnetic field. Table 1 summarizes some of the features
of the SVD rank variation. While the normalized RMS field error decreases rapidly up to about rank-20,
so does the compression ratio. At rank-20, the compression ratio is still significant (35) while retaining the
accuracy needed to closely approximate the original data. Above rank-20, the compression ratio diminishes
faster than the RMS field error (which plateaus at about this rank), so rank-20 represents a good compromise
value between accuracy and compression for this case.

The Poincaré orbit maps shown in Fig. 4 provide convincing evidence that the 3D MHD field data can be
significantly compressed while still maintaining accuracy. At the rank-20 approximation, the energy norm is
considered small enough so the resonant magnetic perturbations – which produce islands at rational surfaces –
should be less than 1% of the minor radius. A more detailed measure of the accuracy of the compressed data
can be obtained by comparing the particle dynamics for a few selected orbits in the vicinity of a magnetic
island. Fig. 5 shows the Poincaré plots for the field data used in constructing Fig. 4, but now in the flux-coor-
dinate (s–h) space. The four solid dots mark the starting points for four orbits which are evolved according to
the mapping in Eq. (19). They represent points near the separatrix (1–2) and inside (3–4) the m = 1 island of a
bifurcated tokamak equilibrium.

Fig. 6 shows the particle orbits vs. / (the toroidal angle) for these four points and for various ranks (3, 10,
20, and full). The orbits contain high-frequency variations superimposed on a slower periodic modulation.
Fig. 5d. Same as Fig. 5a, but using rank-20 data.



Fig. 6a–b. Radial (s) orbit traces for the four starting points marked in Fig. 5 plotted vs. the toroidal angle / for full rank (spline) and low
rank-3 field data.
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The high frequency period is approximately 2p in the toroidal angle and is related to the radial orbit excursion
as it traverses the island during each toroidal circuit. The lower frequency modulation is due to the slow
motion around the island which occurs over many (10–20) toroidal transits. The differences in orbits between
the various field ranks can be attributed to changes in the island structure and the resulting phase changes
between the orbit and the island. For example, the orbit labeled ‘‘1’’ in Fig. 5 lies just within the separatrix
of the m = 1 island for the full rank (3D spline), as well as the rank 10 and 20 approximations. For the



Fig. 6c–d. Radial (s) orbit traces for the four starting points marked in Fig. 5 plotted vs. the toroidal angle / for rank-10 and rank-20 field
data.
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rank-3 fields, however, that orbit is just outside the separatrix. As a result, orbit ‘‘1’’ for rank-3 is confined to a
much narrower range of s values than the same orbit for the more accurate field models. As can be seen, all the
orbits shown for the rank-20 SVD approximation are in good agreement with the full rank model (there are
very minor differences occurring at isolated points such as near the minima of orbit ‘‘1’’). Being close to the
separatrix, the amplitude of orbit 1 gives a good estimate of the island width, which as the plots show is well
approximated even at rank-10.



Fig. 7. Runtime comparison, vs. SVD rank, for the compressed SVD data used in Fig. 4, for a single-processor Opteron chip.

Fig. 8. File size vs. rank of the compressed data, compared with the original data set of 235 · 79 · 49 points.
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We have tested the computational efficiency of the SVD compression/interpolation technique in single pro-
cessor mode on a Cray XT3 computer (the Jaguar computer at the National Center for Computational Sci-
ences at Oak Ridge National Laboratory). This system is a 2.4-GHz AMD Opteron cluster (each processor
has 2GB of memory). Although the serial performance tested here will not precisely reflect performance
impacts in a multiprocessor hybrid fluid-particle code, it nevertheless provides an indication of the computa-
tional attractiveness of the present SVD compression scheme. Equal ranks r1 = r2 were used in the SVD-
GLRA compression method. For the data used in Figs. 4 and 5, these were varied from values of 3 to 30
For comparison, the same orbit calculation was done using a 3D B-spline fit to the original M3D magnetic
field data. The results are shown in Fig. 7. The timings for the two methods approach similar values at about
a rank of 35. However, as shown in Figs. 4a–4d, good approximations for the magnetic island structures were
obtained using ranks in the range of 15–20. For these ranks, the SVD-based runs were about a factor of two
faster than the 3D B-spline based case. While the reduced computational time is important, the much smaller
memory footprint (�600 kb vs. 75 Mb) for the SVD data (see Fig. 8) makes this method of significant interest
for transferring data between macroscopic fluid and kinetic particle codes. The compactness of the SVD data
set will lead to more rapid communication among processors as well as potentially allowing most of the par-
ticle code and its data to fit into cache memory. Furthermore, the truncation of the SVD spectrum provides
automatic smoothing of the discretized field data provided by the MHD code.

5. Conclusions

SVD techniques have been used to achieve significant compression ratios, while preserving accuracy, for
complex, three-dimensional magnetic data arising from the MHD simulation code M3D1. For a rank-
r � 20 approximation, compression factors of 35 corresponding to a residual magnetic energy �10�8 are
obtained. One could consider other compression methods, such as truncated spectral representations. How-
ever, as discussed before, by construction the SVD expansion is optimal (in terms of minimizing the Frobenius
norm) over all possible tensor product representations and will therefore exhibit the best possible convergence
properties. The resulting compressed magnetic data set was used to accurately integrate electron orbits for a
thousand transits around the toroidal plasma in the presence of magnetic islands and regions of stochasticity.
The reduction in the size of the data set due to compression is expected to facilitate rapid data exchange
between multi-processors in future simulations of high temperature plasmas using Monte-Carlo particle meth-
ods to compute closure relations for fluid MHD equations. In the future, the reduced description of MHD
fields available from SVD compression may be useful in developing low dimensional models of such important
physics processes as magnetic reconnection. SVD compression (together with noise filtering, which has not
been discussed here) of multi-dimensional drift orbit data resulting from Monte-Carlo particle codes may also
be possible.
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Appendix A

In this appendix we briefly describe a couple of methods that can be used to continuously ‘‘extend’’ data
from an irregular domain to a circumscribing rectangle, thus allowing SVD to be applied.
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An extension of data into the surrounding ‘‘vacuum’’ region which preserves function values and first deriv-
atives can significantly improve the resulting SVD compression ratio. This extension can be done by construct-
ing a ghost scalar field Ag in the vacuum region and applying SVD compression to the extended field (A + Ag).
We now describe two techniques to compute the ghost field.

The first method creates a non-uniform mesh, or coordinate system, in the vacuum region by ‘‘expanding’’
the plasma boundary along suitably-defined radiating lines. Given a parametric representation of the plasma
boundary as a curve [x0(s), y0(s)] in the x–y plane, we construct a family of N nested curves [xk (s), yk(s)],
k = 1, . . ., N by expanding and rectifying the plasma boundary curve. These curves are uniquely defined by
the parameterization of the boundary curve (k = 0). Based on these nested curves an N · M grid is constructed
by discretizing the s parameter, s1, . . ., sM. The grid elements are defined by the mapping (sj, ck))
[xk(sj), yk(sj)] where ck denotes the coordinate normal to the expanded boundary curve at level k. Using this
grid, the ghost field is computed by extrapolating the field values Akj ” A[xk(sj), yk(sj)] from the previous k sur-
face along the s = const. coordinate lines using a first order Taylor expansion:
Ak;j ¼ Ak�1;j þ ðoA=ocÞ0½ckðsjÞ � ck�1ðsjÞ� ðA:1Þ

The directional derivative in Eq. (A.1) is computed from the relation oA/oc ” [A(cj+1) � A(cj)]/Dcj Here the

approximation (oA/oc)k 	 (oA/oc)0 was made to make the function gradient constant (i.e., o2A/oc2 = 0 along
the parametric curve s = const.) in the ‘‘vacuum’’ region. Fig. 3d shows the decay of the SVD spectrum using
this extension algorithm for the scalar test data in Eq. (16).

Another way to compute continuous field values (and derivatives) in the vacuum region is to use discrete
local 2D gradient information to extend the data from the data boundary towards the circumscribing rectan-
gular. Using Taylor series expansions and starting at the boundary between the data region and the ‘‘vac-
uum’’, one sets up a local, low-order matrix equation to compute the values of the first ‘‘layer’’ of vacuum
grid points (layers are numbered to increase away from the data region, into the vacuum). For example, fitting
only function values and first derivatives leads to a local expansion of the form:
F ðDx;DyÞ ¼ Aþ BDxþ CDy ðA:2Þ

In Eq. (A.2), Dx = x � x0, Dy = y � y0 are the deviations in x, y from the vacuum point (x0, y0) where
F(0, 0) ” A is to be determined. At least three points are chosen (in practice, about twice that number leads
to a smoother extrapolation) in the data region where F is known and which are the closest to the vacuum
point. An integer search over grid indices is used to rapidly determine these points. The resulting set of over-
determined equations is solved (either by SVD or least squares) to obtain the coefficients in Eq. (A.2) and in
particular, the value of A. The method proceeds in this fashion for all the adjacents ‘‘vacuum’’ points. The
newly-determined vacuum values are not treated as known until the next layer of the iteration process begins
(otherwise the method would be dependent upon the choice of starting points). In this way, the vacuum is
filled as these layers ‘‘grow’’ outward from the original known data points until the entire vacuum region grid
has been assigned values.
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